Menoufia University Faculty of Engineering Shebin El-Kom

Department of Electrical Engineering

Course Title: Analysis of Electric Power Networks

Post-Graduate (M. Sc degree) Examination

Time Allowed: 3 Hours Total Marks: 100

Date: 23 / 5 / 2018

ANSWER THE FOLLOWING QUESTIONS

(1-a) For a given power system define each of the following items:

Voltage stability and voltage instability ---- Voltage drop and voltage dip ----- A voltage stability criterion ----- The voltage collapse.

1-b) An industrial load is fed, through a double circuit transmission network, from a constant voltage bus, as shown in

Assuming the connected load power factor to be 0.85 lag, plot the P_L -V_L graph (take the power step equals 0.20 pu).

Then, i- For the load constant impedance $Z_L = 1.0$ pu, find both of its power margin and voltage regulation.

ii- Find the load impedance for which the voltage instability will be occurred.

iii- Assuming the load power factor to be improved to 0.98 lead, plot the new P_L - V_L graph(take the power step equals 0.30 pu), and repeat the computations, as given in the last two items, Comment on the results.

Now, let the connected load to be a constant power load P_L = 0.70 pu, with power factor 0.75 lag, plot the Q - V_L characteristic (start with Q = -0.20 pu, and take the steps ΔQ = \pm 0.10 pu). Then,

- 1-Determine the needed injected reactive power when the voltage regulation at the load bus is equal to 5 %.
- 2 and the minimum voltage value across the load terminals, and determine the corresponding injected reactive power.
 - (2-a) Discuss, briefly, each of the following items:
 - i- Characteristic harmonics, zero-sequence harmonic currents, and inter-harmonics.
 - ii- Four sources of harmonics, and five effects of such harmonics.
 - iii- Series and shunt harmonic filters.
 - iv- Three techniques used for harmonic suppression.
 - v- Quality factor, band-pass width, corner frequencies, and sharpness of a given single-tuned filter.
- (2-b) A series circuit consists of 10 ohms resistor, 20 mH inductance, and 135 μ F capacitor, is connected to an AC supply for which the instantaneous voltage is given as,

$$e(t) = 500 \sin(314 t) + 110 \sin(942 t + \pi/3) + 45 \sin(1570 t + 5\pi/6)$$
.

- Find: 1- The circuit instanteous current equation.
 - 2- The instanteous voltage across each of the circuit elements.
 - 3- The circuit active power loss.
 - 4- The circuit voltage and current total harmonic distortion indices.
- <u>2- c)</u> A six-pulse converter is connected to a 33-kV, 50 Hz, 3-phase supply. The converter mean active and reactive powers are 50 MW, and 75 MVAr, respectively.
- i- When the fundamental frequency load power factor is improved to unity, find the needed capacitance for the use capacitor bank.
 - ii- Design the fifth-order tuned filter needed to be connected with the converter.

Take the filter quality factor $Q_f = 40$, and the filter coil quality factor $Q_{coil} = 100$, and find the external resistance needed to be connected with the filter.

- 3-a) Discuss, briefly, each of the following items:
 - 1- Power system reliability and security
 - 2-The power system telemetry systems
 - 3-The power system network sensitivity factors.
- <u>3- b</u>) Consider the three-bus simple power system, shown in Fig.2. When the output power for the generate connected to bus "2" is decreased to **2.0** pu, calculate the factors: $\alpha_{1-2, 2}$, and $\alpha_{1-3, 2}$.

Calculate also each of the factors: d, and d 1-2, 2-3 1-3, 2-3

Fig.2

3-c) For a considered 3-machine, 6-bus power system the following data are given:

The generators power limits are: $50 \le Pg1 \le 180 \text{ MW}$, $60 \le Pg2 \le 200 \text{ MW}$, and $250 \le PG3 \le 350 \text{ MW}$.

The steady-state generators output powers are Pg1=70 MW, and Pg2=90 MW.

The power on the system line connecting buses "5", and "6", is 40 MW. Show how this power value is decreased to 2 MW, by applying the generators shifts when the following factors are given,

$$^{\alpha}_{5-6, 1} = +0.25$$
, and $^{\alpha}_{5-6, 2} = -0.10$.